Во многих инструкциях или описаниях проектов нередко упоминается шаговый двигатель. В связке с Arduino или Raspberry Pi, он может быть сердцем любого проекта, требующего простого и точного управления положением и движением. Можно собрать любой станок ЧПУ, например, лазерный гравер. Или заняться робототехникой и собрать маленького бегающего робота с ШД в корпусе. Можно даже сделать DIY-контроллер для телескопа на основе Arduino, и отслеживать положение звёзд, сверяясь с данными специальных программ. Возможностей много.
В этой статье мы расскажем, что такое шаговый двигатель и в чём его смысл.
Начнём с того, что шаговый двигатель (ШД) – это один из видов электродвигателей, наряду с линейным или серводвигателем. Подобно своим собратьям, он имеет неподвижную часть, называемую статором, и подвижную – ротор. Его отличительной особенностью является вращение вала на фиксированное количество градусов, и эти дискретные угловые перемещения имеют практически равную величину, потому и называются шагами.
Благодаря этой особенности, можно узнать точное угловое положение вала, просто посчитав, сколько шагов было сделано, без использования датчика.
Особенно хорошо двигатель подходит для устройств, в которых управляющие сигналы подаются в виде цифровых импульсов, а не аналоговых напряжений (любые устройства с программным управлением). Один цифровой сигнал, подаваемый на привод шагового двигателя или транслятор, заставляет ротор делать один точный угол движения. По мере увеличения частоты цифровых импульсов, шаговое движение переходит в непрерывное вращение.
На статоре двигателя есть зубцы, на которые наматываются катушки, а ротор представляет собой либо постоянный магнит, либо железный сердечник с переменным сопротивлением.
Рис. 1. Пример шагового двигателя с ротором в виде железного сердечника
Основной принцип работы шагового двигателя заключается в следующем: при подаче напряжения на одну или несколько фаз статора создается магнитное поле (под действием тока, протекающего в катушке), и ротор выравнивается по этому полю. Если последовательно подавать напряжение на разные фазы, можно повернуть ротор на определенную величину и достичь желаемого конечного положения. На рисунке 2 показан принцип работы.
В начале на катушку А подаётся напряжение и ротор выравнивается по создаваемому ею магнитному полю. Когда напряжение уходит на катушку В, ротор поворачивается по часовой стрелке на 60°, чтобы выровняться с новым магнитным полем. То же самое происходит и при подаче напряжения на катушку C.
Рис. 2
Производительность шагового двигателя зависит от разрешения (размер шага), скорости вращения и крутящего момента. На эти характеристики, в свою очередь, влияют конструктивные особенности двигателей. Далеко не все ШД имеют одинаковую внутреннюю структуру, поскольку существуют различные конфигурации ротора и статора.
Существует три типа роторов:
– Ротор с постоянным магнитом. Здесь магнит выравнивается с магнитным полем, создаваемым цепью статора. Такое решение гарантирует хороший крутящий момент, а также момент удержания. Недостатками являются более низкая скорость и меньшее разрешение по сравнению с другими типами.
Рис. 3. Секция шагового двигателя с постоянным магнитом
– Ротор с переменным сопротивлением. Представляет собой железный сердечник и имеет специфическую форму, позволяющую выравниваться с магнитным полем (рис. 1 и 2). С помощью такой конструкции легче достичь более высокой скорости и разрешения, но крутящий момент часто ниже, и не имеет момента удержания.
– Гибридный ротор. Этот тип имеет необычную конструкцию и представляет собой гибрид двух предыдущих версий. Ротор имеет две крышки с чередующимися зубцами и намагничен в осевом направлении. Такая конфигурация позволяет двигателю иметь преимущества версий с постоянными магнитами и с переменным сопротивлением, в частности, высокое разрешение, скорость и крутящий момент. Высокая производительность требует более сложной конструкции и, следовательно, более высокой стоимости. На рисунке 4 показан упрощенный пример конструкции гибридного двигателя. Когда на катушку A подается напряжение, зуб N-намагниченного колпачка выравнивается с S-намагниченным зубом статора. В то же время, благодаря структуре ротора, S-намагниченный зуб выравнивается с N-намагниченным зубом статора. Настоящие двигатели имеют более сложную структуру, с большим количеством зубцов, чем показанно на рисунке, хотя принцип работы ШД отображён.
Рис. 4. Гибридный ротор
Статор несёт ответственность за создание магнитного поля. К основным его характеристикам можно отнести количество фаз (независимых катушек) и пар полюсов (количество пар зубцов на одну фазу). Наиболее часто используются двухфазные шаговые двигатели, а трёхфазные или пятифазные встречаются значительно реже.
Рис. 5. Двухвазный (слева) и трёхфазный (справа) ШД
На катушки двигателя необходимо подавать напряжение в определенной последовательности, чтобы создать магнитное поле, с которым будет выравниваться ротор. Чтобы легче контролировать этот процесс и обеспечить лучшую работу двигателя, понадобятся дополнительные устройства. И первое из них – это Н-мост. Он представляет собой интегральную схему, которая управляет электрическим соединением катушек двигателя. Н-мост можно рассматривать как электрически управляемый прерыватель, который, будучи закрытым, позволяет подключать катушку к электрической сети и, таким образом, обеспечивать протекание в ней тока. Для каждой фазы двигателя требуется один Н-мост.
Далее идет предварительный драйвер: он управляет активацией транзисторов Н-моста, обеспечивая необходимое напряжение и ток.
И, наконец, микроконтроллер. Он нужен, чтобы управлять предварительным драйвером и, обычно, программируется пользователем двигателя.
Рис. 6. Схема управления шаговым двигателем
В том случае, если Н-мост и предварительный драйвер собраны вместе в одном устройстве, мы называем это драйвером шагового двигателя.
На рынке представлено множество драйверов, имеющих определенные особенности для реализации конкретных проектов. Но можно выделить три наиболее важные характеристики, на которые можно опираться при выборе драйвера:
– Выходное напряжение и ток (необходимо соответствие характеристикам двигателя);
– Деление шага. Для стандартных задач хватит и 1/64. Уменьшение этого показателя увеличивает плавность хода, но снижает максимальные обороты ротора;
– Протокол. STEP/DIR/ENABLE – самый распространённый протокол управления ШД.
Рис. 7. Популярный в DIY кругах драйвер А4988
Управление шаговым двигателем может происходить в трёх основных режимах:
– Полный шаг. В этом режиме ротор поворачивается на один шаг за раз. Под постоянным напряжением находится либо одна, либо две фазы.
– Полушаг. Использование этого режима позволяет уменьшить размер шага в два раза . Единственным недостатком является то, что крутящий момент, создаваемый двигателем, не является постоянным, поскольку он выше, когда обе фазы находятся под напряжением, и ниже, когда под напряжением находится только одна фаза.
– Микрошаг можно рассматривать как дальнейшее усовершенствование полушагового режима, поскольку он позволяет еще больше уменьшить размер шага, но при этом иметь постоянный крутящий момент. Достигается это совершенство путем управления силой тока, протекающего в каждой фазе.
Рис. 8. Вот так выглядит схема микрошагового режима
Шаговые двигатели используются каждый день в разнообразных промышленных и коммерческих проектах благодаря своей низкой стоимости, надежности, высокому крутящему моменту на низких скоростях и простой, прочной структуре, которая работает практически в любых условиях.
Вот лишь несколько примеров использования ШД:
– принтеры и 3D-принтеры
– роботы и протезы
– зеркальные фотоаппараты и видеокамеры
– гравировальные станки
– банкоматы
У вас есть идеи применения ШД в любительской электронике? Доводилось вам уже использовать это устройство в своих проектах? Поделитесь идеями и опытом с нами!